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NONLINEAR CONTROL OF A REUSABLE ROCKET ENGINE
FOR LIFE EXTENSION

Carl F. Lorenzo Michael S. Holmes
NASA Lewis Research Center Asok Ray
21000 Brookpark Road Pennsylvania State University
Cleveland, OH 44135 University Park, PA 16802
Abstract applications to other systems where both dynamic performance

Thi s th tual devel t of a lif and structural durability are critical issues.
IS paper presents the conceptual development of a e~ a5 ehitecture of the two-tier life-extending control (LEC)

extending control system where the objective is to achieve highy, storm is shown in Figure 2. The performance controller in the
performancand structural durability of the plant. Alife-extending nner 100 is designed to achieve a high level of dynamic perfor-

fhance. With a linearized plant (i.e., rocket engine) model, this
- . X controller can be designed using control synthesis techniques
achieving high performance for transient responses of the comg, . a5 4_hasequ-synthesis to assure stability and performance
(kj)us.uon cham dber presksure and fthﬁﬂ'@ ng_xtutrg ranfo.r The  ohustness. The combination of plant dynamics and the perfor-
esign procedure makes use of a combination of linear ang e controller in the inner loop becomes the augmented plant

nonlinear controller synthesis techniques and also allows adapt%r the nonlinear damage controller design in the outer loop. The

tion of the life-extending controller module to augment a conven-g o ntial elements of the damage controller in the outer loop are:
tional performance controller of the rocket engine. The nonImearg

mitigation in both théuel (H,) and oxidize O,) turbineswhile

e X ) ” i) a structural model that uses appropriate plant outputs to
aspect of the design is achieved using non-linear paramet€lgyimate the load conditions (e.g., stress at the critical locations);
optimization of a prescribed control structure. (i) atime domain damage model that uses the load conditions to
_ Fatigue damage in fuel and oxidizer turbine blades is prima-jetemine the damage rate and accumulation at the critical point(s);
rily caused by stress cycling during start-up, shutdown, and, i the damage controller which is designed to reduce the
transient operations of a rocket engine. Fatigue damage in th

; i ; ) . ﬂamage rate and accumulation at the critical points, specifically
turbine blades is one of the most serious causes for engine fa'lur?mder transient operations where the time-dependent load on the

- . stressed structure is controllable.
Description of the Reusable Rocket Engine

A functional diagram for the operation and control of the Design of the Linear Performance Controller
reusable rocket engine under consideration is presented in Figure
1. Liquid hydrogen and liquid oxygen are individually pressur-
ized by separate closed cycle turbopumps. Pressurized cryogen
fuel and oxygen are pumped into two high-pressure preburner. > . . e
which feed the respective turbines with fuel-rich hot gas. The fuel echnique. This controller design method minimizes the worst

O ase gain between the energy of the exogenous inputs and the
and oxidizer turbopump speeds and hence the propellant rovxgnergy of the regulated outputs of a generalized plant. The

into the main thrust chamber are controlled by the respective X X
rformance controller requires very good low frequency distur-

preburner pressures. The exhaust from each turbine is injecteggnce reiection to prevent the damane controller outB@ﬁ” u
into the main combustion chamber where it burns with the J P 9 ”

remaining oxidizer and is expanded through the rocket nozzle tgron;icitrj:wgg sahlg\?v% Stﬁté"r;getttjmeu'getgefg:ameogpﬁttﬁésis of the
generate thrust. The oxygen flow into each of the two preburnersn ducge d L norm controller forpthe rocket en in¥e model with
are independently controlled by the respective servo-controlle o 9

valves. The plant outputs of interest are thHg mixture ratio o inputs (fuel preburner oxidizer valve position and oxidizer
the and main thrust chamber pressure preburner oxidizer valve position) and two outputs (main

A thermo-fluid-dynamic model of the rocket engine has beenthrUSt chamber hot-gas pressure agtHamixture ratio). The

formulated for plant performance analysis and control systemd/ a1t mgdlel |fs tohbtamekd Py first Imetarlzmg tge %8 state nonlin- .
synthesis. Standard lumped parameter methods have been us @génosizng ane ro$a§0 g?g'gg ?Aftaercli?\rgaﬁ;a:ggnp'[ﬁzslug-e 0
to approximate the partial differential equations describing mass tat Ip dénl_!z d d.t : 13-state i ' del for th
momentum, and energy conservation by a set of first-order e |Ir|1ea:jr Model IS re lf(C? Odal ds aedmear moae’ for the
differential equations. The plant model is constructed by causaFomro er design via Hankel model order reduction, (maintain-

interconnection of the primary subsystem models such as mai\m(i:’i nﬁf%' f'de(l'c%)éis-l;geogrfvagegg%'dgﬁeeﬁtg;m pe\rAfI(r)]:thance
thrust chamber, preburners, turbopumps, fuel and oxidizer sup- 9Nt Woerp . pone ress
nalizes the tracking error of combustion chamber pressure

) . . e

ply header, and fixed nozzle regeneration cooling. The plan ; . '

model has 18 state variables, two control inputs, and two conﬁvOZ/H.ﬁqand’ which penalizes the tracking error of theh
e frequency-dependent control signal wei

ratio.
trolled outputs. consists of two component®/y, which penalizes the fuel

position preburner oxidizer valve motion akldy, which

penalizes the oxidizer preburner oxidizer valve motion. The
The fundamental concept of life-extending control was de- objectives of these control signal weights are: (i) prevention of

veloped initially for rocket engines, however, it has broad large oscillations in the feedback control signal that may cause

This section presents the design of a sampled-data perfor-
ance controller (inner loop) for the reusable rocket engine using
e H, (or induced L norm to L, norm) controller synthesis

Life-Extending Control System
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valve saturation; and (ii) reduction of valve wear and tear dueload on the stressed structure is controllable. The nonlinear

to high-frequency movements. damage model is a simplified representation of the material
The parameters of both performance weights and controbehavior so that it can be incorporated in the outer control loop

signal weights are initially selected based on the control sysfor real-time execution.

tem performance requirements and the knowledge of the plant The damage controller is designed as a discrete-time linear

dynamics; subsequently, the parameters are fine-tuned (Refestructure by directly optimizing the elements of its A, B, C, and

ence 1) based on the time-domain responses of the simulatioD matrices. To decrease the number of parameters to be

experiments. optimized, the A matrix is constrained to be a diagonal matrix
Using the generalized plant from Figure 3, a sampled-datawith distinct real elements.
controller is designed which is optimal in the inducgehbrm The parameters of the linear dynamic filter are identified by

sense. The controller provides acceptable reference signahinimizing a cost functional using nonlinear optimization.

tracking for the plant with reasonable control effort. It is found The cost functional is evaluated by the simulation, and the
that reducing the order of the sampled-data controller from 21simulation results are a function of the current damage control-
states to 15 states causes no significant change in the controllégr chosen by the optimization routine. Since damage control-
dynamics from an input/output point of view. The 15-state lers designed using this method are directly based on the

controller is used in what follows. maneuver used in the optimization process, the maneuver
should be chosen to be broadly representative of all plant
Damage Modeling operation. The resulting damage controller is then validated by

examining the results of various other typical maneuvers that
the plant is expected to perform with this damage controller in
the damage feedback loop.

€ The simulation on which the design of the damage control-

bedded in the lif di X it should b ler is based is a ramp-up of the main thrust chamber hot gas
embedded In the lite extending control loop, it should be aSpres;sure from a level of 2700 psi to 3000 psi at a rate of 3000
mathematically and/or computationally simple as possible,

while representing the damage rate with sufficient accuracy forp si/sec, followed by a steady state at the final 3000 psi pressure

| Fati q fth 4 hvd for 500 ms (see Figure 4). The,/@, mixture ratio for this
control purposes. Fatigue damage of the oxygen and hydrogeg; ., ation is to be kept at a constant value of 6.02. After each

tqrbo-purcr;p '_[:grb||nle bI?des |s_|_ﬁekfactt_ed az the damagde ImeCh(Eimulation is performed, data representing the results of the
nism (and critical oca ions). The fatigue damage model, use imulation is sent to the cost functional subroutine. The value of
in the controller design, assumes that damage only OCCUrS .cumulated damage for the @nd H turbines at time t=0.6

during tensile loading. Fo_r_the_ cur_rent a_lppllcat|on It W'" be seconds is also used for the calculation of the value of the cost
seen that the damage mitigation is derived by reducing the}unctional

mean stress on the turbin(_a blades. Therefor_e, the damage rate The cost functional includes the effects of both reference
equation (Reference 1) gives the damage increment for Ongignal tracking (dynamic) performance and damage in the tur-

Damage modeling is a critically important aspect of Life-
Extending Control. The damage model is continuous-time-
based for use in the controller design procedure as well for th
implementation of the controller itself. Since the model is

stress cycle as: bine blades:
0 D_%’ gtot — jperf . jdam (3)
Oy = ol % [ o) In the accumulated damage components, the initial accu-
K4 Eb —UmE mulated damage is subtracted from the final damage at time
f

NT=0.6 seconds to penalize the damage accumulated during
where o, is the stress amplitudey,, is the mean stress, the maneuver. The initial fatigue damage for both theu@

a,f =223.589 ksi is the fatigue strength coefficient, and b = the b turbine bladeg is aSS””.‘ed to be D(0)=0.1. .
Since the governing equations and the cost functional are

-0.0858 is the fatigue strength exponent. The damage rate igonlinear in nature, a nonlinear programming technique is

calculated from the relation used to identify the optimal parameters of the damage control-
-1 ler. Also, in order to evaluate the cost functional, a time
G 0 consuming simulation must be performed. Therefore, a non-
. % o % ; . . .
D= = (2) linear programming technique known as Sequential Qua-
Ea'f —O'mE n dratic Programming (SQP) is employed, which has the

reputation of being able to efficiently and successfully solve a
wide range of nonlinear programming problems in which the
"dvaluation of the cost functional is a computationally inten-
sive procedure. A Sequential Quadratic Programming (SQP)
Fortran Software package developed by &kl at Stanford
University called NPSOL is utilized to design the damage
The outer damage control loop is a cascaded combinatiorgontroller.

of a structural estimator, a nonlinear fatigue damage model for ~ Interaction effects between the damage controller and the
the turbine blades, and a linear dynamic filter acting as theperformance controller are minimized by; (i) requiring a high
damage controller. The parameters of the dynamic filter arelevel of dynamic performance through the cost functional for
optimized to reduce the damage rate and accumulation at th#he nonlinear optimization of the damage controller, and (ii)
critical points (i.e., fuel and oxidizer turbine blades) specifi- by the inherent frequency separation of the high frequency
cally under transient operations where the time-dependentélamage loop and the lower frequency performance loop.

whereQ is the frequency of vibration of the blades in units of
rad/sec. This model is used for both on-line damage estimatio
and in the off-line optimization.

Design of the Nonlinear Damage Controller
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Simulation Results and Discussion psito 3000 psi at a rate of 3000 psi/sec (see Figures 11 to 16). This

. . . . maneuver involves a larger pressure increase than the nominal
The damage controller is designed based on a transient whmﬁ: ger p

takes the chamber pressure from 2700 psi to 3000 psi (see Figur% aneuver used to design the damage controller, and, therefore, is

. ) 4 §pected to produce a larger amount of damage accumulation
5to0 10). Each plot displays two cases: (i) no damage control (i.e.; g : . . .
u(K) = uft K) + ufb (); and (i) with damage control (i.ei(k) = A comparison of the chamber pressure trajectories with and

uft (k) + ' (k) + ,dam ®) without t_he damage _controller is shown in Figure 11. As in the

The chamber pressuré trajectories for the two cases are co 2700 psi to 3000 psi case, the damage controller acts to "slow
e Miown” the transient as it approaches the final pressure of 3000

pared in Figure 5. _The_damage controller causes a slower nsgsi_ Although the damage controller causes thératio to

time, a longer settling time, and less overshoot in the chambe eviate from the desired value of 6.02 more than it did during the

2700 psi to 3000 psi simulation, as seen in Figure 12, it settles to

pressure transient. The damage controller also causeg/Hig O
ratio to deviate farther from the desired value of 6.02 than the casg ,,, ; steady state and remains within acceptable bounds through-
ut the simulation. The mixture ratio is important in this applica-

with no damage control as seen in Figure 6. However, the mixtur
ratio settles to 6.02 at steady state and remains within acceptab &N as an indicator of chamber temperature (and propellant
tilization) since the damage model does not contain temperature

bounds throughout the duration of the simulation for both cases

The damage rate and_ a_ccumL_JIation plots fOIj the_ first 1 secon ffects
of the 2700 psi - 3000 psi simulation are shown in Figures 7 to 10. The damage rate and accumulation plots for the first 1.2 sec-
ds of the 2100 psi to 3000 psi simulation are shown in Figures

Also, Table 1 summarizes the accumulated damage after thign
time interval for the two simulation cases (i.e., with and without 13 to 16. Table 2 summarizes the accumulated damage for this
darprﬁg?ocsosnérf%l) gr:]rifrté’;o (t)l#]r:én(ﬁ EL?ni;'er ressure (Figure ansient. In summary, the use of nonlinear optimization in the

yn p  chamber pressure (19 esign of the damage controller achieved high levels of dynamic
and the modestly increased excursion in mixture ratio is the cos

incurred for the improved damage performance. It is also ob- esponse and damage mitigation. The design approach is straight-

served that the slope of the accumulated damage (damage rate)fo aﬁ;%iﬁ?nt%ea?;rg%%sn;g?; cli ﬁor”e(?edr;’\r/ggqthls application. A

t=1.0 seconds for theurbine blade (Figure 7) indicates that

there may be a relatively large steady state damage rate for that

turbine. If this is found to be the case for longer times then the

steady state damage accumulation would far outweigh the trant) Lorenzo, C.F., Holmes, M.S., and Ray, A. “Design of Life

sient damage. Extending Controls Using Nonlinear Parameter Optimiza-
The quality of the control designed above is now tested ona  tion”, NASA TP 3700 to be published, 1998.

transient maneuver which takes the chamber pressure from 2100

References

Table 1. Accumulated Damage (at t=1) for

2700 psi - 3000 psi Simulation

Table 2. Accumulated Damage (at t2 ) for

2100 psi - 3000 psi Simulation.

Without Damagg With Damage| Ratio Without Damagg With Damagg Ratio
Control Control Control Control
H,Blades|  1.130® 6.15¢100 18 H, Blades|  2.46:10° 9.61x10% | 26
0, Blades 1.21x1073 3.45¢105 35.1 O, Blades 2.48<1073 7.01x10° | 354
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Liquid Hy ﬂ “ Liquid O2 bi-propellant engine.
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